

Breaking IBM WebSphere
Authentication by Abusing
Crypto Flaws in LTPA Tokens
(CVE-2022-22475 & CVE-2022-22476)

Tom Tervoort

W H I T E P A P E R

A B U R E A U V E R I TA S C O M PA N Y

Nowadays, web applications often rely on cryptographically protected tokens to facilitate single sign-on

or maintain sessions across distributed servers. Such tokens contain expiration dates and the identity of

the current user, and are stored in the user’s browser. It is essential that these users are not able to change

the contents of these tokens, as that could allow, for instance, impersonation of other user, elevation of

privileges or authentication bypasses. A crypto bug in a token implementation can lead to multiple forms of

authentication vulnerabilities.

During my analysis of several token implementations, I found that the way that the application server

IBM WebSphere Liberty had implementation flaws in its implementation of the Lightweight Third Party

Authentication (LTPA) protocol, a cryptographic token scheme used by multiple IBM products. By combining

this implementation bug with cryptographic weaknesses in the protocol itself, an attacker could to change

their token into one belonging to any other user. While this attack involves a tricky adaptive chosen-ciphertext

attack, it can be easily automated with a script that usually only takes a few seconds to execute. I also found a

second (less severe) impersonation attack involving the injection of a delimiter character.

Like Zerologon and many SAML vulnerabilities, this is another example of an exploitable authentication

vulnerability caused by flaws in (in implementation of) a somewhat obscure but widely used cryptographic

protocol from the early 2000’s. This is probably also not the last bit of obscure legacy cryptography relied upon

for critical functionality, highlighting the need for more research in this area.

Breaking IBM WebSphere
Authentication by Abusing
Crypto Flaws in LTPA Tokens

(CVE-2022-22475 & CVE-2022-22476)

https://www.secura.com/

The LTPA Protocol

Lightweight Third Party Authentication (LTPA) is a mechanism

used by (ex-)IBM products such as WebSphere and Lotus

Domino to facilitate single sign-on and stateless session

management. There are two versions of this protocol. My

research focuses on the “more secure” version 2 and its use

in IBM WebSphere Liberty, a modern application server for

Java web apps.

LTPA version 2 basically just offers an encrypted cookie,

called LtpaToken2, which embeds a user identifier and an

expiration date. The key material used to both create and

validate these cookies is stored in a file named ltpa.keys.

This file can be shared with different web servers, allowing

each of them to either issue or validate these cookies (and

therefore the client’s identity) without having to do a lookup

to some centralized database to check a session identifier.

Keeping these keys secret is critical to being able to discern

the authenticity of the tokens.

The ltpa.keys file contains two types of keys: an AES key for

encryption and an RSA key pair for signing. Together these

are used to compose a signed and encrypted token, in the

manner shown by Figure 1.

Figure 1: Structure of a typical LTPA token.

Validation of such a token consists of the following steps:

1.	 Use the AES key from the ltpa.keys file to decrypt the

cookie (see the next section for details). The token is

invalid if decryption fails.

2.	 Split the result on % symbols in three parts: user data,

an unsigned expiration time and a signature. The

token is invalid if there are not exactly three percent

signs in it.

3.	 Parse the user data string into a key-value mapping.

4.	 Look up the expiration time (as a POSIX timestamp)

from the user data using the “expire” key. If not

present, use the unsigned expiration time instead. The

token is invalid if the timestamp lies in the past.

5.	 Use the RSA public key from the ltpa.keys file to validate

the signature, using the user data as input.

6.	 If all prior checks succeeded, treat the “u” key from the

user data as the authentic identifier of the current user.

The reason why the timestamp is included twice is probably

for the purpose of legacy compatibility: older token issuers

might only include the expiration timestamp in the unsigned

part of the token, while older validators may only check this

part. The attacks described here assumes that both the issuer

and the validator are aware of signed expiration dates.

It turns out there were vulnerabilities in steps 1, 3 and 5,

while the expiration fallback mechanism allowed for more

convenient exploitation. The attacks are described in the

three sections below.

https://www.secura.com/
https://www.ibm.com/docs/en/was/9.0.5?topic=authentication-ltpa-ltpa-version-2-tokens

Defeating Encryption: A Chosen-
Ciphertext “Key Extraction” Attack

Note: this will be the only section containing cryptographic

details. In case you are not interested in that: the bottom line

is that an attacker with a valid token will be able to exploit a

crypto bug in order to learn the AES encryption key and thus

bypass validation step 1.

AES by itself is really just a low-level building block capable

of permuting blocks of 16 bytes. In order to turn it into a

full-fledged encryption scheme one needs to plug it into

a mode of operation. There are several popular modes of

operation available, with varying security properties. In the

case of the LTPA protocol, the well-known Cipher Block

Chaining (CBC) mode is used.

 The working of the CBC mode of operation is shown in

Figure 2: before encryption, each plaintext block is XOR’ed

with the value of the previous ciphertext block. The very

first block is XOR’ed with an Initialization Vector (IV) value

that is provided as a parameter during both encryption and

decryption.

By picking CBC, the LTPA designers actually already made

a (common) mistake. Even though the CBC mode is very

popular, it can only offer security against chosen-plaintext

attacks (an attacker can decide something to encrypt and

then observe the result) but not against chosen-ciphertext

attacks (an attacker can alter ciphertexts before they are

decrypted). While chosen-plaintext security is sufficient

in many application areas, it is definitely not enough for

protecting cookies sent back and forth between a server and

an untrusted user, since the user can modify cookies before

sending them back to the server and directly observe its

response.

Furthermore, the chosen-plaintext security property of CBC is

only achieved when the IV is randomly generated and unique

for every encrypted message. This requirement is however

violated by the LTPA protocol, which uses the AES key as the

IV value. What this means in practice is that the first 16-byte

block of the ciphertext will be defined as AES encryption

of the AES key XOR the first plaintext block; which is a very

useful property for attackers. Because any information we

know about the start of the plaintext directly tells us about

the value of (parts of) the key.

A well known chosen-ciphertext attack against AES-CBC

is Vaudenay’s padding oracle attack. This attack relies

on an attacker making selective alterations to a submitted

ciphertext, and observing differences between two types of

decryption errors in order to extract information about the

plaintext. Unfortunately, this attack does not directly work

against WebSphere Liberty, because servers do not disclose

any details about decryption errors to the end user. In fact,

the only bit of information that the server will disclose is

whether token validation succeeded or not, through the

HTTP status code.

Figure 2: Diagram of the CBC mode of operation. Source: WhiteTimberwolf via Wikimedia Commons

https://www.secura.com/
https://iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.ps

Figure 3: Effect of inserting an extra (all-zero) block in a ciphertext. Note that changing this block
completely randomizes one plaintext block but causes a predictable change in another.

This may not seem like much, but this single bit of

information is actually enough to reveal parts of the

plaintext. What really helps us is that the unsigned

timestamp data is completely ignored when a signed

timestamp is present. The server will not even validate if

it contains a valid ASCII digit sequence: almost any byte

sequence is allowed in this location. So, if we inject an extra

ciphertext block somewhere in the middle of the unsigned

timestamp, we can keep the token valid. Figure 3 shows

what happens when we do this.

Figure 3 shows two effects that can happen when inserting

a ciphertext block within the timestamp: either the result will

contain garbage data that does not invalidate the token, or

it will contain one or more bytes that happen to match the

ASCII value of a percent sign. In the latter case, step 2 of

token validation fails and our token is no longer accepted.

So, when we submit a ciphertext block that keeps the token

valid it tells us that the result does not contain any extra

percent signs. When it does become invalid, this tells us that

one of the following two situations has occurred:

1.	 The randomized plaintext block directly corresponding

to our ciphertext block happens to contain one or more

percent signs (probability: about 6%).

2.	 When the next plaintext block is XOR’ed with our

ciphertext block, the result will contain a percent sign.

In the second situation, we learn some information about

the plaintext: if we observe that setting a particular

ciphertext byte at position I to a value X will always result in

an error, we can conclude that the plaintext byte at position

I + 16 must therefore have the value X XOR ‘%’. This fact

can be exploited to slowly retrieve the contents of a plaintext

block, by using a script that implements the algorithm

illustrated in Figure 4.

The trick here is that we insert a copy of the first block of

ciphertext, that, upon decryption, will have a value equaling

the IV (i.e. the AES key!) XOR’red with the plaintext of the

first byte, XOR’red with our randomly inserted 3rd block.

This modification increases the cookie length, but because

the insertions are in the (unchecked) timestamp field, the

constructed cookie will be treated as “okay to decrypt”.

Since we know what we inserted, and we know that the

first block consists of the text “expire:” followed by several

numbers that form a timestamp, it follows that if we can

figure out exactly what the copy of block 1 decrypted to, we

can derive the IV, which is also the AES encryption key itself!

Now, finding out what the copy of block 1 decrypts to, can

be deduced by the oracle that will tell us if there are too

many percent-signs in the decrypted value (see above). We

do this by modifying the last byte of the random part of

our insert after a successful validation. If this invalidates the

token, an extra “%”-sign has appeared somewhere. By then

flipping bits in consecutive bytes, we can determine what

position the “%”-sign has appeared at, and easily calculate

that byte of the key.

https://www.secura.com/

Figure 4: Illustration of an adaptive chosen-ciphertext attack algorithm that decrypts a single byte
from the first plaintext block XOR’ed with the key. By repeating this 16 times, the entire value of

P1 XOR key can be determined.

By following the steps in Figure 4, we can eventually determine the full value of the first plaintext block XOR’ed with the key.

We know this plaintext block contains the term “expire:” followed by the first 9 digits of the token’s expiration time. Even

when we don’t know when this expiration date is supposed to be exactly, it is probably safe to assume it will expire within

the next 10 days. If so, we can easily guess the final digits with a brute-force attack, as shown in Figure 5.

Figure 5: Separating the encryption key from the first plaintext block.

https://www.secura.com/

 I have shared an exploit script with IBM that, given a valid

LTPA token and URL of any endpoint that validates it,

executes this attack and returns the AES encryption key.

With this key, it is possible to decrypt and re-encrypt tokens;

thus completely negating the encryption layer of the LTPA

protocol. By itself, however, this is not such an interesting

capability, because it just allows us to figure out when

the token expires and what the user identifier is. This is

a fundamental protocol bug, though, and this attack (or

some variation thereof) will likely work against other LTPA

implementations as well.

I haven’t been able to find an application that actually

relies on LTPA tokens to keep information secret, although

I can’t that I have managed to successfully investigate all

(proprietary and closed-source) LTPA implementations.

Therefore I advised IBM to look into this themselves, and to

avoid every having to rely on LTPA token secrecy.

If we want to actually tamper with token plaintexts,

we also need to bypass the signature. This is where the

implementation vulnerability specific to Websphere Liberty

comes in.

Bypassing the Signature Check

Signature validation was implemented using the Java

method shown in Figure 6. This method first calls the

expiration checking method (which throws an exception

when the expiration date lies in the past) and then calls the

verify method (which returns whether the RSA signature is

correct, or can throw an exception in case of a syntax error).

What is notable about this method is that it can fail in

two ways: it can either throw an exception or return false.

This creates some potentially dangerous ambiguity: when

callers of the method only account for the exception failure

path, they may forget to also check the return value of the

method.

It turns out this is exactly what happened: isValid was called

from two locations within the LTPA library and in both cases

the exceptions were handled but the return value was

effectively ignored. This means that the actual validity of

the signature is simply never checked. This is actually not

that surprising. The code path where false is returned will

probably never occur under normal circumstances: it is not

hit when a token expires and when someone blindly tampers

with an encrypted token this will most likely result in syntax

error that causes an exception. This situation probably made

it difficult to catch this bug during testing and explains why

it had never been encountered by accident.

Figure 6: LTPA signature verification method (before patch). Source: OpenLiberty source code via GitHub.

https://www.secura.com/
https://github.com/OpenLiberty/open-liberty/blob/2fd4a880754c37a988c5ed9ac4f1ea5988e465d6/dev/com.ibm.ws.security.token.ltpa/src/com/ibm/ws/security/token/ltpa/internal/LTPAToken2.java

By abusing the weaknesses of the encryption layer, however,

we can easily exploit this bug as follows:

1.	 Obtain a valid LtpaToken2 cookie for an attacker account.

2.	 Use the adaptive chosen-ciphertext attack described in

the previous section to determine the encryption key.

3.	 Decrypt your cookie with it and change the user identifier

to that of another user you want to impersonate (you can

also extend the expiration date to far in the future), but

leave the signature the same.

4.	 Re-encrypt the altered cookie and submit it. The isValid

method will return false during signature validation but

because decryption and parsing succeeded the token will

still be accepted. You have now impersonated another

user account.

I managed to successfully carry out this attack against an

application running on WebSphere Liberty that accepted LTPA

authentication. This vulnerability has been assigned CVE-

2022-22475.

Do note that this attack is authenticated: you need to

first obtain a valid token yourself. So one could consider

this impersonation vulnerability to be closer to a privilege

escalation attack than to a full authentication bypass. Of

course any user being able to impersonate all others could still

be very severe for multi-user web applications.

I have not been able to find a way to exploit the key extraction

attack without a sample of a valid token to start with, nor

have I found a practical method to use chosen-ciphertext

attacks to forge a syntactically correct token from scratch.

I do not want to rule out that such attacks are possible,

though, which would in theory turn this vulnerability into a full

authentication bypass.

Attacking the Parser: LTPA Delimiter
Injection

Besides the issues with decryption and signature validation, I

have also found a vulnerability in the user data parser that is

exploitable without touching any cryptography.

While in practice tokens usually just contain “u” and “expire”

attributes, the parser actually supports an extensive language

for key-value mappings, where multiple values can be mapped

to the same key. This language also allows escaping of special

characters. For example, consider the following mapping:

"akey" => ["value1", "value2", "special character:

$"]

"otherkey" => ["other value"]

This will be represented with the following LTPA token syntax:

akey:value1|value2|special character\:

\$$otherkey:other value

Note that colons are used to separate keys and values, dollar

signs are used to separate key-value pairs and pipe characters

separate multiple values mapped to the same key. Backslashes

are used to escape special characters when they are part of a

value string.

It turned out, however, that the escaping logic of the token

builder was incomplete: as shown by Figure 7, the special

characters %, $ and : were escaped but the characters | and \

were not.

Figure 7: Character escaping logic in LTPA token builder

(before patch). Source: OpenLiberty source code via GitHub.

https://www.secura.com/
https://www.ibm.com/support/pages/security-bulletin-ibm-websphere-application-server-liberty-vulnerable-identity-spoofing-cve-2022-22475
https://www.ibm.com/support/pages/security-bulletin-ibm-websphere-application-server-liberty-vulnerable-identity-spoofing-cve-2022-22475
https://github.com/OpenLiberty/open-liberty/blob/2fd4a880754c37a988c5ed9ac4f1ea5988e465d6/dev/com.ibm.ws.security.token.ltpa/src/com/ibm/ws/security/token/ltpa/internal/LTPATokenizer.java

This oversight is exploitable in situations where attackers

can influence or select their own user ID’s. For example,

when they can register on a site with a custom username or

e-mail address. Consider the case where an attacker wants

to impersonate the user named “admin”. What they can do

is register a user with a name like “admin|notreally”. This

will result in them being handed a token that embeds the

following key value pairs:

"expire" => ["1234567890000"]

"u" => ["user:somerealm/admin|notreally"]

When included in the LTPA token, this is serialized as follows:

expire:1234567890000$u:user\:somerealm/

admin|notreally

This userdata string is then included in a properly signed and

encrypted token.

At first, a WebSphere Liberty server will cache the original

key-value pairs, and not bother to decrypt and parse the

token again when it sees it in a request. However, there

are plenty of options to force a cache miss. I made a simple

ciphertext change that didn’t invalidate the token, which

worked right away. I can imagine that messing with load

balancer cookies or waiting for the cache to be purged will

also be effective. You could also send the token to a different

application server than the one that issued it, considering

that having multiple servers is the main reason to use LTPA in

the first place.

In such cases the token will be parsed again into the

following key-value mapping:

"expire" => ["1234567890000"]

"u" => ["user:somerealm/admin”, "notreally"]

The user now appears to have two usernames. The

implementation will however simply pick the first one, and

now the attacker has logged in as “admin”.

This vulnerability has been assigned CVE-2022-22476.

I guess that exploitable applications may be pretty rare

though, as they need to meet the following criteria in order

to be vulnerable:

1.	 The application uses an unpatched WebSphere Liberty

version with LTPA authentication.

2.	 Users can register (or change) their own user identifiers.

3.	 These user identifiers are allowed to contain a “|”

character.

I have not yet seen an application that meets all three

criteria, and an application that does will also be vulnerable

to the cryptographic attacks which do not require an account

to be registered. However, there is the theoretical notion that

such applications exist. Nonetheless, when an application

does happen to be vulnerable, exploitation is very easy and

does not require the attacker to use any automated scripts.

https://www.secura.com/
https://www.ibm.com/support/pages/security-bulletin-ibm-websphere-application-server-liberty-vulnerable-identity-spoofing-cve-2022-22476

Recommendations

The three vulnerabilities have been responsibly disclosed to

IBM, which have resulted in patches published in July 2022.

If you have an application that uses WebSphere Liberty

or Open Liberty and (might) use LTPA authentication, we

recommend you install these patches right away. See the

IBM support pages for more information.

Exploitation attempts of both vulnerabilities should leave a

trace: CVE-2022-22475 exploitation will involve sequences

of hundreds of requests containing invalid tokens, while

exploiting CVE-2022-22476 requires the creation of a user

account with a “|” character in the name.

Because CVE-2022-22475 has a modest CVSS score of 7.1

and has received not much publicity so far, there is a chance

that installation of this patch has not received high priority

by maintainers. Therefore, we have decided to not publicly

release our exploit script at this time. While the creation of

this script was not trivial, running it against a WebSphere

server is easy and does not require cryptographic knowledge.

Therefore, take into account that (easy to use) public exploits

may appear in the future.

The patches mitigate the parser flaws by properly escaping

all special characters, and solve the signature bypass by

making the isValid method always throw an exception when

validation fails. Exploitation of the encryption key extraction

attack is made significantly more difficult because the

unsigned timestamp is now checked to match the signed

timestamp. Even if that attack is still possible, it would only

allow an attacker to compromise confidentiality of a token

(which is probably not useful) and not its integrity.

Note that we have not fully tested other (IBM) products such

as “traditional Websphere” for a similar signature validation

bugs. I did take a glance at a few open source and unofficial

LTPA token validators on GitHub, and did not spot the same

signature validation bug.

Because we can’t rule out that the same vulnerable Liberty

code base may have been used elsewhere, we recommended

to IBM to investigate this. As far as we know patches have

only been released for the Liberty product.

In general, I would recommend against using LTPA tokens

for new applications: the underlying cryptography does not

follow best practices and these attacks have shown that the

complexity of the protocol is sensitive to implementation

errors.

Just like Zerologon, these protocol and implementation

vulnerabilities have remained undetected for more than a

decade. This shows that even if an authentication protocol

has been in use for a long time, that does not mean its

underlying cryptography is safe or has ever been properly

scrutinized.

About Secura
Secura has worked in information security and privacy for over two decades. This is why we uniquely understand the

challenges that you face like no one else and would be delighted to help you address your information security matters

efficiently and thoroughly. We work in the areas of people, processes and technology. For our customers we offer a range of

security testing services varying in depth and scope.

Secura has the mission to support organizations with up-to-date knowledge to work toward a bright and safe future.

Stay up to date with the latest insights on digital security and subscribe to our periodical newsletter: secura.com/subscribe.

Follow us on:

https://www.ibm.com/support/pages/security-bulletin-ibm-websphere-application-server-liberty-vulnerable-identity-spoofing-cve-2022-22475
https://twitter.com/securabv
https://www.linkedin.com/company/83775/

A B U R E A U V E R I TA S C O M PA N Y

https://group.bureauveritas.com/
https://www.secura.com

