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Nowadays, web applications often rely on cryptographically protected tokens to facilitate single sign-on 

or maintain sessions across distributed servers. Such tokens contain expiration dates and the identity of 

the current user, and are stored in the user’s browser. It is essential that these users are not able to change 

the contents of these tokens, as that could allow, for instance, impersonation of other user, elevation of 

privileges or authentication bypasses. A crypto bug in a token implementation can lead to multiple forms of 

authentication vulnerabilities.

During my analysis of several token implementations, I found that the way that the application server 

IBM WebSphere Liberty had implementation flaws in its implementation of the Lightweight Third Party 

Authentication (LTPA) protocol, a cryptographic token scheme used by multiple IBM products. By combining 

this implementation bug with cryptographic weaknesses in the protocol itself, an attacker could to change 

their token into one belonging to any other user. While this attack involves a tricky adaptive chosen-ciphertext 

attack, it can be easily automated with a script that usually only takes a few seconds to execute. I also found a 

second (less severe) impersonation attack involving the injection of a delimiter character.

Like Zerologon and many SAML vulnerabilities, this is another example of an exploitable authentication 

vulnerability caused by flaws in (in implementation of) a somewhat obscure but widely used cryptographic 

protocol from the early 2000’s. This is probably also not the last bit of obscure legacy cryptography relied upon 

for critical functionality, highlighting the need for more research in this area.
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The LTPA Protocol

Lightweight Third Party Authentication (LTPA) is a mechanism 

used by (ex-)IBM products such as WebSphere and Lotus 

Domino to facilitate single sign-on and stateless session 

management. There are two versions of this protocol. My 

research focuses on the “more secure” version 2 and its use 

in IBM WebSphere Liberty, a modern application server for 

Java web apps.

LTPA version 2 basically just offers an encrypted cookie, 

called LtpaToken2, which embeds a user identifier and an 

expiration date. The key material used to both create and 

validate these cookies is stored in a file named ltpa.keys. 

This file can be shared with different web servers, allowing 

each of them to either issue or validate these cookies (and 

therefore the client’s identity) without having to do a lookup 

to some centralized database to check a session identifier. 

Keeping these keys secret is critical to being able to discern 

the authenticity of the tokens.

The ltpa.keys file contains two types of keys: an AES key for 

encryption and an RSA key pair for signing. Together these 

are used to compose a signed and encrypted token, in the 

manner shown by Figure 1.

Figure 1: Structure of a typical LTPA token.

Validation of such a token consists of the following steps:

1.	 Use the AES key from the ltpa.keys file to decrypt the 

cookie (see the next section for details). The token is 

invalid if decryption fails.

2.	 Split the result on % symbols in three parts: user data, 

an unsigned expiration time and a signature. The 

token is invalid if there are not exactly three percent 

signs in it.

3.	 Parse the user data string into a key-value mapping.

4.	 Look up the expiration time (as a POSIX timestamp) 

from the user data using the “expire” key. If not 

present, use the unsigned expiration time instead. The 

token is invalid if the timestamp lies in the past.

5.	 Use the RSA public key from the ltpa.keys file to validate 

the signature, using the user data as input.

6.	 If all prior checks succeeded, treat the “u” key from the 

user data as the authentic identifier of the current user.

The reason why the timestamp is included twice is probably 

for the purpose of legacy compatibility: older token issuers 

might only include the expiration timestamp in the unsigned 

part of the token, while older validators may only check this 

part. The attacks described here assumes that both the issuer 

and the validator are aware of signed expiration dates. 

It turns out there were vulnerabilities in steps 1, 3 and 5, 

while the expiration fallback mechanism allowed for more 

convenient exploitation. The attacks are described in the 

three sections below.
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Defeating Encryption: A Chosen-
Ciphertext “Key Extraction” Attack

Note: this will be the only section containing cryptographic 

details. In case you are not interested in that: the bottom line 

is that an attacker with a valid token will be able to exploit a 

crypto bug in order to learn the AES encryption key and thus 

bypass validation step 1.

 

 

AES by itself is really just a low-level building block capable 

of permuting blocks of 16 bytes. In order to turn it into a 

full-fledged encryption scheme one needs to plug it into 

a mode of operation. There are several popular modes of 

operation available, with varying security properties. In the 

case of the LTPA protocol, the well-known Cipher Block 

Chaining (CBC) mode is used. 

 The working of the CBC mode of operation is shown in 

Figure 2: before encryption, each plaintext block is XOR’ed 

with the value of the previous ciphertext block. The very 

first block is XOR’ed with an Initialization Vector (IV) value 

that is provided as a parameter during both encryption and 

decryption.

By picking CBC, the LTPA designers actually already made 

a (common) mistake. Even though the CBC mode is very 

popular, it can only offer security against chosen-plaintext 

attacks (an attacker can decide something to encrypt and 

then observe the result) but not against chosen-ciphertext 

attacks (an attacker can alter ciphertexts before they are 

decrypted). While chosen-plaintext security is sufficient 

in many application areas, it is definitely not enough for 

protecting cookies sent back and forth between a server and 

an untrusted user, since the user can modify cookies before 

sending them back to the server and directly observe its 

response. 

Furthermore, the chosen-plaintext security property of CBC is 

only achieved when the IV is randomly generated and unique 

for every encrypted message. This requirement is however 

violated by the LTPA protocol, which uses the AES key as the 

IV value. What this means in practice is that the first 16-byte 

block of the ciphertext will be defined as AES encryption 

of the AES key XOR the first plaintext block; which is a very 

useful property for attackers. Because any information we 

know about the start of the plaintext directly tells us about 

the value of (parts of) the key.

A well known chosen-ciphertext attack against AES-CBC 

is Vaudenay’s padding oracle attack. This attack relies 

on an attacker making selective alterations to a submitted 

ciphertext, and observing differences between two types of 

decryption errors in order to extract information about the 

plaintext. Unfortunately, this attack does not directly work 

against WebSphere Liberty, because servers do not disclose 

any details about decryption errors to the end user. In fact, 

the only bit of information that the server will disclose is 

whether token validation succeeded or not, through the 

HTTP status code.

Figure 2: Diagram of the CBC mode of operation. Source: WhiteTimberwolf via Wikimedia Commons
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Figure 3: Effect of inserting an extra (all-zero) block in a ciphertext. Note that changing this block 
completely randomizes one plaintext block but causes a predictable change in another.

This may not seem like much, but this single bit of 

information is actually enough to reveal parts of the 

plaintext. What really helps us is that the unsigned 

timestamp data is completely ignored when a signed 

timestamp is present. The server will not even validate if 

it contains a valid ASCII digit sequence: almost any byte 

sequence is allowed in this location. So, if we inject an extra 

ciphertext block somewhere in the middle of the unsigned 

timestamp, we can keep the token valid. Figure 3 shows 

what happens when we do this.

Figure 3 shows two effects that can happen when inserting 

a ciphertext block within the timestamp: either the result will 

contain garbage data that does not invalidate the token, or 

it will contain one or more bytes that happen to match the 

ASCII value of a percent sign. In the latter case, step 2 of 

token validation fails and our token is no longer accepted.

So, when we submit a ciphertext block that keeps the token 

valid it tells us that the result does not contain any extra 

percent signs. When it does become invalid, this tells us that 

one of the following two situations has occurred:

1.	 The randomized plaintext block directly corresponding 

to our ciphertext block happens to contain one or more 

percent signs (probability: about 6%).

2.	 When the next plaintext block is XOR’ed with our 

ciphertext block, the result will contain a percent sign.

In the second situation, we learn some information about 

the plaintext: if we observe that setting a particular 

ciphertext byte at position I to a value X will always result in 

an error, we can conclude that the plaintext byte at position 

I + 16 must therefore have the value X XOR ‘%’. This fact 

can be exploited to slowly retrieve the contents of a plaintext 

block, by using a script that implements the algorithm 

illustrated in Figure 4.

The trick here is that we insert a copy of the first block of 

ciphertext, that, upon decryption, will have a value equaling 

the IV (i.e. the AES key!) XOR’red with the plaintext of the 

first byte, XOR’red with our randomly inserted 3rd block. 

This modification increases the cookie length, but because 

the insertions are in the (unchecked) timestamp field, the 

constructed cookie will be treated as “okay to decrypt”. 

Since we know what we inserted, and we know that the 

first block consists of the text “expire:” followed by several 

numbers that form a timestamp, it follows that if we can 

figure out exactly what the copy of block 1 decrypted to, we 

can derive the IV, which is also the AES encryption key itself! 

Now, finding out what the copy of block 1 decrypts to, can 

be deduced by the oracle that will tell us if there are too 

many percent-signs in the decrypted value (see above). We 

do this by modifying the last byte of the random part of 

our insert after a successful validation. If this invalidates the 

token, an extra “%”-sign has appeared somewhere. By then 

flipping bits in consecutive bytes, we can determine what 

position the “%”-sign has appeared at, and easily calculate 

that byte of the key. 
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Figure 4: Illustration of an adaptive chosen-ciphertext attack algorithm that decrypts a single byte 
from the first plaintext block XOR’ed with the key. By repeating this 16 times, the entire value of 

P1 XOR key can be determined.

By following the steps in Figure 4, we can eventually determine the full value of the first plaintext block XOR’ed with the key. 

We know this plaintext block contains the term “expire:” followed by the first 9 digits of the token’s expiration time. Even 

when we don’t know when this expiration date is supposed to be exactly, it is probably safe to assume it will expire within 

the next 10 days. If so, we can easily guess the final digits with a brute-force attack, as shown in Figure 5.

Figure 5: Separating the encryption key from the first plaintext block.
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 I have shared an exploit script with IBM that, given a valid 

LTPA token and URL of any endpoint that validates it, 

executes this attack and returns the AES encryption key.

With this key, it is possible to decrypt and re-encrypt tokens; 

thus completely negating the encryption layer of the LTPA 

protocol. By itself, however, this is not such an interesting 

capability, because it just allows us to figure out when 

the token expires and what the user identifier is. This is 

a fundamental protocol bug, though, and this attack (or 

some variation thereof) will likely work against other LTPA 

implementations as well. 

I haven’t been able to find an application that actually 

relies on LTPA tokens to keep information secret, although 

I can’t that I have managed to successfully investigate all 

(proprietary and closed-source) LTPA implementations. 

Therefore I advised IBM to look into this themselves, and to 

avoid every having to rely on LTPA token secrecy.

If we want to actually tamper with token plaintexts, 

we also need to bypass the signature. This is where the 

implementation vulnerability specific to Websphere Liberty 

comes in.

Bypassing the Signature Check

Signature validation was implemented using the Java 

method shown in Figure 6. This method first calls the 

expiration checking method (which throws an exception 

when the expiration date lies in the past) and then calls the 

verify method (which returns whether the RSA signature is 

correct, or can throw an exception in case of a syntax error).

What is notable about this method is that it can fail in 

two ways: it can either throw an exception or return false. 

This creates some potentially dangerous ambiguity: when 

callers of the method only account for the exception failure 

path, they may forget to also check the return value of the 

method. 

It turns out this is exactly what happened: isValid was called 

from two locations within the LTPA library and in both cases 

the exceptions were handled but the return value was 

effectively ignored. This means that the actual validity of 

the signature is simply never checked. This is actually not 

that surprising. The code path where false is returned will 

probably never occur under normal circumstances: it is not 

hit when a token expires and when someone blindly tampers 

with an encrypted token this will most likely result in syntax 

error that causes an exception. This situation probably made 

it difficult to catch this bug during testing and explains why 

it had never been encountered by accident.

Figure 6: LTPA signature verification method (before patch). Source: OpenLiberty source code via GitHub.
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By abusing the weaknesses of the encryption layer, however, 

we can easily exploit this bug as follows:

1.	 Obtain a valid LtpaToken2 cookie for an attacker account.

2.	 Use the adaptive chosen-ciphertext attack described in 

the previous section to determine the encryption key.

3.	 Decrypt your cookie with it and change the user identifier 

to that of another user you want to impersonate (you can 

also extend the expiration date to far in the future), but 

leave the signature the same.

4.	 Re-encrypt the altered cookie and submit it. The isValid 

method will return false during signature validation but 

because decryption and parsing succeeded the token will 

still be accepted. You have now impersonated another 

user account.

I managed to successfully carry out this attack against an 

application running on WebSphere Liberty that accepted LTPA 

authentication. This vulnerability has been assigned CVE-

2022-22475.

Do note that this attack is authenticated: you need to 

first obtain a valid token yourself. So one could consider 

this impersonation vulnerability to be closer to a privilege 

escalation attack than to a full authentication bypass. Of 

course any user being able to impersonate all others could still 

be very severe for multi-user web applications.

 

I have not been able to find a way to exploit the key extraction 

attack without a sample of a valid token to start with, nor 

have I found a practical method to use chosen-ciphertext 

attacks to forge a syntactically correct token from scratch. 

I do not want to rule out that such attacks are possible, 

though, which would in theory turn this vulnerability into a full 

authentication bypass. 

Attacking the Parser: LTPA Delimiter 
Injection

Besides the issues with decryption and signature validation, I 

have also found a vulnerability in the user data parser that is 

exploitable without touching any cryptography. 

While in practice tokens usually just contain “u” and “expire” 

attributes, the parser actually supports an extensive language 

for key-value mappings, where multiple values can be mapped 

to the same key. This language also allows escaping of special 

characters. For example, consider the following mapping:

"akey" => ["value1", "value2", "special character: 

$"]

"otherkey" => ["other value"]

This will be represented with the following LTPA token syntax: 

akey:value1|value2|special character\: 

\$$otherkey:other value

Note that colons are used to separate keys and values, dollar 

signs are used to separate key-value pairs and pipe characters 

separate multiple values mapped to the same key. Backslashes 

are used to escape special characters when they are part of a 

value string.

It turned out, however, that the escaping logic of the token 

builder was incomplete: as shown by Figure 7, the special 

characters %, $ and : were escaped but the characters | and \ 

were not.

Figure 7: Character escaping logic in LTPA token builder 

(before patch). Source: OpenLiberty source code via GitHub.
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This oversight is exploitable in situations where attackers 

can influence or select their own user ID’s. For example, 

when they can register on a site with a custom username or 

e-mail address. Consider the case where an attacker wants 

to impersonate the user named “admin”. What they can do 

is register a user with a name like “admin|notreally”. This 

will result in them being handed a token that embeds the 

following key value pairs:

"expire" => ["1234567890000"]

"u" => ["user:somerealm/admin|notreally"]

When included in the LTPA token, this is serialized as follows:

expire:1234567890000$u:user\:somerealm/

admin|notreally

This userdata string is then included in a properly signed and 

encrypted token. 

At first, a WebSphere Liberty server will cache the original 

key-value pairs, and not bother to decrypt and parse the 

token again when it sees it in a request. However, there 

are plenty of options to force a cache miss. I made a simple 

ciphertext change that didn’t invalidate the token, which 

worked right away. I can imagine that messing with load 

balancer cookies or waiting for the cache to be purged will 

also be effective. You could also send the token to a different 

application server than the one that issued it, considering 

that having multiple servers is the main reason to use LTPA in 

the first place.

In such cases the token will be parsed again into the 

following key-value mapping:

"expire" => ["1234567890000"]

"u" => ["user:somerealm/admin”, "notreally"]

The user now appears to have two usernames. The 

implementation will however simply pick the first one, and 

now the attacker has logged in as “admin”.

This vulnerability has been assigned CVE-2022-22476. 

I guess that exploitable applications may be pretty rare 

though, as they need to meet the following criteria in order 

to be vulnerable:

1.	 The application uses an unpatched WebSphere Liberty 

version with LTPA authentication.

2.	 Users can register (or change) their own user identifiers.

3.	 These user identifiers are allowed to contain a “|” 

character.

I have not yet seen an application that meets all three 

criteria, and an application that does will also be vulnerable 

to the cryptographic attacks which do not require an account 

to be registered. However, there is the theoretical notion that 

such applications exist. Nonetheless, when an application 

does happen to be vulnerable, exploitation is very easy and 

does not require the attacker to use any automated scripts.

https://www.secura.com/
https://www.ibm.com/support/pages/security-bulletin-ibm-websphere-application-server-liberty-vulnerable-identity-spoofing-cve-2022-22476


Recommendations

The three vulnerabilities have been responsibly disclosed to 

IBM, which have resulted in patches published in July 2022. 

If you have an application that uses WebSphere Liberty 

or Open Liberty and (might) use LTPA authentication, we 

recommend you install these patches right away. See the 

IBM support pages for more information.

Exploitation attempts of both vulnerabilities should leave a 

trace: CVE-2022-22475 exploitation will involve sequences 

of hundreds of requests containing invalid tokens, while 

exploiting CVE-2022-22476 requires the creation of a user 

account with a “|” character in the name.

Because CVE-2022-22475 has a modest CVSS score of 7.1 

and has received not much publicity so far, there is a chance 

that installation of this patch has not received high priority 

by maintainers. Therefore, we have decided to not publicly 

release our exploit script at this time. While the creation of 

this script was not trivial, running it against a WebSphere 

server is easy and does not require cryptographic knowledge. 

Therefore, take into account that (easy to use) public exploits 

may appear in the future.

The patches mitigate the parser flaws by properly escaping 

all special characters, and solve the signature bypass by 

making the isValid method always throw an exception when 

validation fails. Exploitation of the encryption key extraction  

 

 

attack is made significantly more difficult because the 

unsigned timestamp is now checked to match the signed 

timestamp. Even if that attack is still possible, it would only 

allow an attacker to compromise confidentiality of a token 

(which is probably not useful) and not its integrity.

Note that we have not fully tested other (IBM) products such 

as “traditional Websphere” for a similar signature validation 

bugs. I did take a glance at a few open source and unofficial 

LTPA token validators on GitHub, and did not spot the same 

signature validation bug. 

Because we can’t rule out that the same vulnerable Liberty 

code base may have been used elsewhere, we recommended 

to IBM to investigate this. As far as we know patches have 

only been released for the Liberty product.

In general, I would recommend against using LTPA tokens 

for new applications: the underlying cryptography does not 

follow best practices and these attacks have shown that the 

complexity of the protocol is sensitive to implementation 

errors. 

Just like Zerologon, these protocol and implementation 

vulnerabilities have remained undetected for more than a 

decade. This shows that even if an authentication protocol 

has been in use for a long time, that does not mean its 

underlying cryptography is safe or has ever been properly 

scrutinized.
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