
TIMEROASTING, TRUSTROASTING
AND COMPUTER SPRAYING
Taking advantage of weak computer and
trust account passwords in Active Directory

W H I T E P A P E R

Tom Tervoort

Table of Contents

1. How dollar accounts get bad passwords		 3

2. Attacking computer passwords			 4

 I cracked a computer password. What now?	 4

Technique #1: Widening the Kerberoast net	 5

Technique #2: “Computer spraying” for initial

access					 6

Technique #3: Unauthenticated “Timeroasting”

for computer hashes			

3. Attacking trust passwords 			 8

 What about trust passwords? 		 8

 Trustroasting” for trust hashes 	 9

4. Conclusion and recommendations		 11

Timeroasting, Trustroasting and
Computer Spraying:
Taking advantage of weak computer and trust
account passwords in Active Directory

Strong passwords are essential for protecting internal networks. Defenders constantly
have to attempt convincing people to set passwords that are hard to guess. Meanwhile,
attackers have a broad toolbox for figuring out and taking advantage of passwords that
are still predictable.

So far, these attack techniques have concentrated on passwords chosen by humans, because they are motivated on picking

passwords that are easy to type or remember. Within an Active Directory network there are also passwords that are used by

computers or even whole domains in order to log in to other systems. Typically, these passwords are not picked by people

but instead automatically set to something completely unguessable or uncrackable, so attackers don’t bother with them.

However, there are some obscure exceptions to this rule, and these can be taken advantage of by attackers. This whitepaper

explores a number of new attack techniques that take advantage of these exceptions.

Many common AD attack techniques, such as Kerberoasting or

password spraying, take advantage of the predictability of passwords

chosen by humans either for themselves or for a service account they

manage. So far these types of attacks have been considered useless

against the passwords of accounts of which the name ends in a dollar

sign: these are usually non-personal AD accounts associated with

domain-joined computers or forest/domain trust relations. Normally,

AD securely generates long and random passwords for these types of

accounts, that are completely infeasible to ever guess with an (online

or offline) brute-force attack. Because of this, attack tool authors

have so far been ignoring these accounts, as attempting to guess

their passwords seemed to be a waste of time. It turns out, however,

that these types of passwords always being unguessable is a false

assumption in practice: there are actually several situations in which

computer or trust accounts can have highly predictable passwords,

and we encountered this in a number of organizational domains. This

fact has all kinds of interesting implications, and we have come up

with four novel AD pentesting techniques to take advantage of this.

In domains where weak dollar account passwords are present, these

techniques can provide new (stealthy) methods of initial access and

additional avenues for lateral movement and privilege escalation

within AD environments.

A GitHub repository is available with the custom tooling described in

this article.

3Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

When we compromise a domain during a pentest or

perform a password strength assessment for one of our

customers, we usually import the entire domain’s account

database into Hashcat in order to crack password hashes.

Because AD “protects” passwords using unsalted MD4

hashes, the number of accounts in the domain barely affects

the performance of our dictionary or brute-force attacks.

Therefore we usually don’t bother filtering the hashes

we upload, and also subject the dollar account hashes to

cracking, even though common wisdom says this is useless.

However, we often see that some of our cracking results

also include accounts with a dollar name at the end,

which contradicts the idea that these accounts’ passwords

are uncrackable. Even more interesting, in most cases

the cracked passwords happen to be identical to their

usernames (excluding the dollar sign).

We were curious about how this could possibly happen,

and after some Googling stumbled upon a blogpost from

2012 by Joe Richards which explains that in the time of

Windows NT4, computer names were initialized with a

default password that matches the first 14 characters of

their computer name, lowercase and without a dollar sign.

Apparently, the command line tool net computer (which

stems from the NT era) also sets this password for newly

created machines. Likewise, when you create a computer

object in the GUI you will have the option to click a

compatibility checkbox that will cause the same behavior.

We verified if this is still the case for an up-to-date Windows

Server 2019 domain controller, and to our surprise the

computer accounts we created this way did indeed still use

their names as their passwords! This behavior is not really

a secret but rather obscure. It is hard to blame system

administrators to not be aware of this dangerous side-effect

of checking a box or using a traditional tool.

Now, Windows systems do automatically rotate their

passwords every 30 days by default, which should eventually

cause the weak password to be replaced by something

secure. However, especially in situations where computer

accounts are added manually it’s not hard to imagine

circumstances where legacy systems, test accounts or

computer accounts that were never actually used are still

lingering around in a large domain. It is also possible to

disable computer password resets, which would keep

the passwords insecure. Furthermore, attacker can also

simply be lucky to identify an insecure account within 30

days of its creation.

Having computers with weak passwords is one thing,

but we have also seen more than one case where a trust

account had a trivially crackable password as well. Trust

passwords act as shared secrets between domains or forests

and are used to facilitate users of a domain A to log in to

a service in domain B without having to directly expose the

user credentials to domain B.

When a trust between Windows domains is set up, the

password will be long and random. When setting up a trust

with a non-Windows Kerberos realm, however, you will

have to configure the password manually and therefore

1. How Dollar Accounts Get Bad Passwords

Figure 1: A dangerous checkbox. When checked, your new

computer account will initially get a terrible password.

https://www.secura.com/
https://hashcat.net/
https://blog.joeware.net/2012/09/12/2590/
https://blog.joeware.net/2012/09/12/2590/
https://web.archive.org/web/20070116022046/http:/support.microsoft.com/kb/320187
https://web.archive.org/web/20070116022046/http:/support.microsoft.com/kb/320187
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/domain-member-disable-machine-account-password-changes

you might accidentally pick something brute-forceable. Trust

passwords can also be reset manually in order to resolve

issues, providing another opportunity for administrators to

accidentally set a weak password. In a case we encountered,

a weak default password was set under the assumption that

a piece of third-party software would reset it to something

strong automatically, but for some reason that did not

happen in practice.

There are probably plenty of other ways to mess up

computer or trust passwords that we are not aware of yet.

Most importantly, we have observed quite a few times that

this has actually somehow happened in real organizations.

This means that looking for and exploiting these types of

weak passwords can be a useful tool for attackers and is

something that should be accounted for by defenders. We

will now examine what we can do with these observations

from an offensive perspective.

So let’s say you’ve managed to determine the password of some Windows computer

account. What can you actually do with it? Well, first of all computer accounts are basically

just regular domain accounts, and just like user accounts they allow you to extract domain

information over LDAP, access world-readable shares and mount all kinds of authenticated

attacks like Kerberoasting, authentication coercion or AD CS abuse. So, when the computer

password is the first thing you’ve got, you more or less have the same level of access as

when you’ve compromised a single user.

Computer accounts can also be members of domain groups, so if a group has any special

privileges you can take advantage of those. If the computer in question happens to be a

domain controller, you can use its account to simply download the entire domain database

via a DCSync attack, and you’ve basically become Domain Admin right away. Alternatively,

if the computer has constrained delegation permissions to some other system, you can

obtain delegation tickets that allow you to impersonate users towards that second system.

Even if the computer account itself does not have very interesting privileges, the users

logged in to the computer the account belongs to might have. When you know a

computer’s password, there are a variety of ways you can execute code with Local

Administrator privileges on that system. Probably the most effective method is to create a

silver ticket for this computer with which you impersonate a user that has admin privileges

on it (such as the Domain Admin). Next, scan the computer for accessible network services

like SMB and use a standard technique like PSExec to achieve code execution.

If that sounds like too much of a hassle, there’s a good chance that if you just throw

Impacket’s versatile secretsdump script at the system with the computer account’s

credentials, its hashes will just spill out :)

So now that we have something to do with these weak passwords, we’ll take a look at four

techniques of actually finding them.

2. Attacking Computer Passwords

I CRACKED A COMPUTER PASSWORD. WHAT NOW?

A B U R E A U V E R I TA S C O M PA N Y

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/ad-forest-recovery-reset-trust
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/constrained-delegation
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket
https://github.com/fortra/impacket/blob/master/examples/secretsdump.py
https://www.secura.com/

5Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

TECHNIQUE #1: WIDENING THE
KERBEROAST NET
Computer accounts are basically just a type of service

account: they have SPNs and any domain user can request

Kerberos service tickets for them. These tickets are

encrypted with the account password, and if said password

is weak can be brute-forced offline (a Kerberoast attack).

So why do most Kerberoasting tools only display tickets

from non-computer service accounts? Well, that’s simply

because these were intentionally filtered these out under

the assumption that computer tickets could not be cracked

anyway. Since we now know this is not always true, we

can simply tweak an existing tool to not skip these kinds of

accounts.

While we could (and probably eventually should) submit

some pull requests for these tools that add this as a new

feature, for now we’ve just changed a single line of code in

Impacket’s GetUserSPNs.py script to broaden the LDAP

filter used to limit which accounts were targeted, as shown

in Figure 2 and Figure 3.

Figure 2: ugly hack to make the Impacket script GetUserSPNs.py no longer filter out computer accounts.

As a nice side effect, this might fool some EDR solutions that only trigger on the more specific OID.

Figure 3: Result of running GetUserSPNs.py without account type restrictions. The ‘HOST’ SPNs are

those belonging to computer accounts.

Afterwards, we can just crack these tickets as usual. In

order to account for legacy NT4 computer passwords, make

sure you also supply a custom dictionary that contains the

legacy password for each computer name (generated in

the manner shown in Figure 4). It’s not necessary to use a

ruleset along with this dictionary.

https://www.secura.com/
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/kerberoast
https://github.com/fortra/impacket/blob/master/examples/GetUserSPNs.py

6 Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

Figure 4: Python one-liner transforming computer names into corresponding legacy NT passwords.

TECHNIQUE #2: “COMPUTER SPRAYING”
FOR INITIAL ACCESS
In order to perform a Kerberoasting attack, we still need

to have some kind of user account, so we can’t use it to

obtain initial access. A popular initial access technique is

password spraying: here a very short list of extremely

common passwords is used in combination with a list of

usernames (obtained from some internal or external source)

in the hope that at least one of these users happens to have

one of these very common passwords. The advantage of

this attack compared to regular brute-forcing is that you

circumvent account lock-out restrictions. The downsides are

that you need to rely on there being someone with a very

bad password (which is less likely with a stricter password

policy) and that you need to find a way to obtain or guess

usernames.

However, if we assume the domain may have at least one

computer account with a legacy NT password, we can use

a very simple variation of a password spraying attack: try

a single login attempt for every computer account with a

corresponding legacy password. Given a computer name

list, you can use a simple script like the one in Figure 4 to

get a list of passwords. Then you can simply plug both lists

in a spraying tool (like CrackMapExec with the --no-

bruteforce option). If this yields a hit, you’ve got a valid

AD account.

Of course you first need to somehow come up with a list of

computer account names. Luckily this is often easier than

determining regular usernames. Some tactics you could use

include the following:

1.	 If the domain has a reverse DNS zone, you can scan it

(e.g. with nmap –sL) to obtain internal domain names

corresponding to IPs. For many systems, the first label

of its domain name will correspond to its computer

name.

2.	 When you are scanning systems themselves via Nmap

or CrackMapExec you will frequently be able to learn

computer names via services like SMB.

3.	 Organizations usually name their systems in a

consistent way. You can obtain some initial examples

by scanning or sniffing broadcast traffic. Then, when

you see names like WORKSTATION01983 or ACME-

SERV4258 it won’t be very difficult to predict and

generate a bunch of other potential names.

4.	 Standard user enumeration techniques (like exploiting

SMB NULL sessions) will also work for computer

accounts.

At this moment, we are not really sure yet how good

intrusion detection systems are at noticing this attack.

On the one hand, we only try one password per user and

failed computer logins do not correspond to well-known

attacker behavior. On the other hand, we are still doing a

whole lot of failed logins from a single source and each of

them definitely leaves behind a Windows event (event ID

4625; the same as when a regular user enters an incorrect

password), so we can hardly call this attack stealthy.

https://www.secura.com/
https://owasp.org/www-community/attacks/Password_Spraying_Attack
https://github.com/Porchetta-Industries/CrackMapExec

7Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

TECHNIQUE #3:
UNAUTHENTICATED “TIMEROASTING”
FOR COMPUTER HASHES
Domain-joined computers synchronize time using the

well-known Network Time Protocol (NTP), where a Domain

Controller acts as a time server. A problem with traditional

NTP is that it is not authenticated, and that MitM attackers

could spoof response packets and therefore mess with the

client’s clock.

To address this problem, Microsoft has added a custom

extension to NTP that cryptographically authenticates

NTP responses. When a system needs to synchronize its

clock, it will include the RID of its computer account to an

extension field in the NTP request. Then, the server will add

a cryptographic Message Authentication Code (MAC) of the

response that uses the NTLM hash (i.e. MD4 hash) of the

computer account password as a key.

The client can request one of two MAC mechanisms: a

preferred one based on HMAC-SHA512 and HKDF; and a

legacy mechanism that is defined as MD5(MD4(computer-

pwd) || NTP-response). This second approach is actually

pretty broken from a cryptographic perspective, but that

should not be a problem for a client supporting the modern

variant.

Note that the client does not actually have to authenticate

itself to the NTP server. It can just pick any RID and the

server will look up the corresponding password and

authenticate the response with it. This does not seem like

a problem when you are just worried about time spoofing

attacks, but this system does have the side-effect that an

unauthenticated party can ask for what amounts to a salted

password hash of every computer account in the domain!

This is still not problematic as long as all computer accounts

are long and random but, as we established, that is not

always the case. Therefore, we can abuse NTP to get

“hashes” for every computer account and then attempt to

crack them offline.

We wrote a small tool that executes this “Timeroasting”

attack. Just give it an IP address of a domain controller and

should be able to extract the computer password hashes.

You can find it on GitHub.

Figure 5: Output of the Timeroast tool. Contains RIDs, MD5 hashes and NTP responses that can be

treated as a ‘salt’ for the password hashes.

Unfortunately, the resulting password hashes do not match

a format supported by Hashcat. While it was possible to

define a matching dynamic hash format in John the Ripper,

we ran into the problem that the salts (i.e. NTP response

bodies) were longer than what the tool supported. So

instead, we just created a very simple Python script that

would mount a (slow) dictionary attack with a list of

potential passwords, which is still suitable for cracking

legacy NT passwords or passwords that are particularly

weak. It’s also still an order of magnitude faster than online

brute-forcing. You can also find this “timecrack” script in

our GitHub repository.

A downside of Timeroasting compared to Kerberoasting

(other than that you can’t use it to crack non-computer

accounts) is that the results do not actually contain the

computer names; only RIDs. You can map RIDs to computer

names if you can find an SMB share allowing NULL sessions.

If that doesn’t work, but you can obtain a list of (potential)

computer names using any of the other techniques

https://www.secura.com/
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sntp/8106cb73-ab3a-4542-8bc8-784dd32031cc
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sntp/8106cb73-ab3a-4542-8bc8-784dd32031cc
https://github.com/SecuraBV/Timeroast
https://github.com/SecuraBV/Timeroast

8 Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

described in the section above you’ll have a good word

list to run a brute-force attack with, and then you’ll be

able to decide the computer name based on the matching

password. You will also be able to brute-force other types of

passwords much faster.

Computers sending NTP requests is pretty normal, so it

probably won’t trigger any alerts and doesn’t seem to result

in much of an audit trail either. I also doubt anyone will be

looking for suspicious NTP traffic (unless they are aware of

this blogpost) so for now Timeroasting by itself seems to be

quite a stealthy method of potentially obtaining an initial AD

account. Of course you would still need to come up with

a list of computer names, which may be more noticeable

unless you only use the brute-force strategy to come up

with them.

Computer
Kerberoasting Computer spraying Timeroasting

Needs a user account? Yes No No

Detectable? Yes Somewhat Probably not (so far)

Finds legacy NT passwords? Yes Yes Yes

Finds other weak passwords? Yes No (unless you turn it into a

full online brute-force attack)

Yes (but only tells you the

RID of the account it belongs

to)

Table 1: Advantages and drawbacks of the three techniques to find weak computer passwords.

WHAT ABOUT TRUST PASSWORDS?
While, in our experience, weak trust passwords are a lot

more rare than weak computer passwords, the impact of

finding one of these is much larger, usually leading to full

compromise of at least one of the two domains in the trust

relationship.

The reason for this is because trust passwords are used to

create so-called inter-realm Kerberos tickets, also known as

referral tickets or trust tickets. These are basically encrypted

messages from domain A to domain B, stating something

along the lines of “I have identified that this is Bob, a user

of of domain A and a member of the Enterprise Admins

group”. The key used to decrypt and verify this message

is the trust password of the A-B trust. This trust password

is associated with two “trust accounts” stored in either

domain. In domain A this account would generally be called

“B$” and in domain B it would be called “A$”.

What you can do with a compromised trust account

depends on the direction of the trust. If B trusts A, then you

can impersonate any user from the A domain when logging

in to B. If A also trusts B (a “two-way” trust relationship),

you can impersonate any users from B towards A. Your

capabilities up to this point depend on whether any users

from one domain have interesting privileges in the other.

If both domains are in the same forest however, you can

probably elevate yourself to Domain Admin in at least one

of the two domains.

If you want to know more about abusing trusts, and on

how to forge trust tickets in practice, we recommend you

read this excellent blog post on the topic on Active

Directory Security.

3. Attacking Trust Passwords

https://www.secura.com/
https://adsecurity.org/?p=1588
https://adsecurity.org/?p=1588

9Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

“TRUSTROASTING” FOR TRUST HASHES
Any user within a domain A can look up A’s trust

relationships; for example by running nltest /trusted_

domains. If a domain B trusts A, then the domain controller

of A will be able to issue trust tickets encrypted by the trust

password shared between A and B. It’s the other way around

if the relationship is in the other direction.

If B trusts A, you can receive a trust ticket by simply asking

A for a ticket for some SPN in the B domain (for example

the HOST service of B’s domain controller). This is easy to

accomplish with the Rubeus tool, by running the following

two commands with the credentials of any user in domain A:

Rubeus asktgt /user:<username> /

password:<password>

Rubeus asktgs /service:host/<B-dc-name> /

ticket:<output of asktgt>

Rubeus will output the resulting trust ticket, which is the

only material you need to start a brute-force attack. By

default Rubeus will request an RC4-encrypted ticket, which

can be brute-forced much faster but it is more likely to be

detected as malicious. You can supply the /aes flag to ask for

an AES-encrypted ticket instead, making it very difficult to

distinguish your action from legitimate behavior.

Figure 6: Using Rubeus to fetch a trust ticket.

https://www.secura.com/
https://github.com/GhostPack/Rubeus

10 Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

A B U R E A U V E R I TA S C O M PA N Y

So how do crack trust tickets? Luckily, the encryption

protocol and format is exactly the same as for any other

Kerberos service ticket, so we can just use existing tools

like Hashcat. We only need to convert Rubeus’ output

format to the Hashcat service ticket syntax that is normally

used for Kerberoasting. To accomplish this, we wrote a

simple conversion script in Python that was inspired by

Rubeus’ Kerberoasting code. You can find this script in our

Timeroast repository.

Figure 7: Converting Rubeus output to Hashcat input.

We didn’t (yet) write a nice and complete “trustroasting”

script that automatically identifies all trust tickets, requests

them and outputs them in Hashcat format. So you’d have

to follow the above steps for every trust relationship. Luckily

the amount of trusts is usually low, so this won’t be much

work. Once you’ve gotten the resulting hashes, you can

plug them into Hashcat and start cracking. Make sure to

add the names of the trust accounts to your word list as

well. If you’re lucky, you might have caught one with a bad

password and some very high privileges.

https://www.secura.com/
https://github.com/SecuraBV/Timeroast
https://github.com/SecuraBV/Timeroast

None of the attacks described here are the result of new vulnerabilities in Windows. Rather,

they are just the result of extrapolation on what is possible when you drop the assumption that

computer and trust passwords are always strong and random.

We’ve only recently started looking at weak trust and computer passwords ourselves, and while

we’ve encountered quite a few of them so far, it’s difficult to say how common this problem is

and how valuable it would be to include these techniques in a pentester’s toolkit. Nonetheless,

we have a few recommendations for those that may be affected by this:

For Network Administrators:

•	 If you are in a position where you have to specify a trust password myself, make sure to

generate a long random string.

•	 Avoid creating legacy compatible computer accounts.

•	 Make sure trust and computer password rotation are working properly. Get rid of legacy

domain computer accounts that have not been active for a long time.

•	 If you are creating computer accounts using something other than a standard domain join,

it can’t hurt to immediately rotate its password afterwards just in case.

For Defenders:

•	 Failed login attempts with computer accounts should also be monitored. Unlike regular

users, where occasional failed logins are expected, a computer providing a wrong

password should be very rare under normal circumstances. If you see more of those you

may be dealing with a computer spraying attack.

For EDR Vendors:

•	 Failed computer login attempts, or one source sending many NTP queries (or any NTP

query with a non-existent RID) should be treated as attack indicators.

For Pentesters and Red Teamers:

•	 Need initial AD access? Computer spraying or Timeroasting may just be the tricks that can

get you there.

•	 Trustroasting is a high-impact, low-probability but also low-effort attack. Definitely worth

trying, because if it happens to succeed the road to domain/enterprise admin may become

pretty short.

•	 Kerberoasting or cracking NTDS databases? Can’t hurt to include the computer and trust

accounts as well. Also add potential legacy NT passwords to your wordlist.

For Microsoft:

•	 Consider warning users more clearly on what “pre-Windows 2000 compatibility” entails,

and avoid recommendations that may lead to admins manually picking trust passwords.

3. Conclusion and Recommendations

About Secura

Secura is a leading and independent expert in digital security. Our customer markets

range from government and healthcare to finance and industry. Secura offers

technical services, such as vulnerability assessments, penetration testing and red

teaming. We also provide certification for IoT and Industrial (OT/ICS) environments,

as well as audits, advisory services and awareness training. Our goal: raising your

cyber resilience.

Follow us on:

Contact us today at

info@secura.com or

visit secura.com for

more information.

A B U R E A U V E R I TA S C O M PA N Y

https://twitter.com/securabv
https://www.linkedin.com/company/83775/
https://www.secura.com/
mailto:info%40secura.com?subject=
https://group.bureauveritas.com/
https://www.secura.com

