WHITE PAPER

TIMEROASTING, TRUSTROASTING
AND COMPUTER SPRAYING

Taking advantage of weak computer and
trust account passwords in Active Directory

Tom Tervoort @Secura

A BUREAU VERITAS COMPANY



Timeroasting, Trustroasting and
Computer Spraying:

Taking advantage of weak computer and trust
account passwords in Active Directory

Strong passwords are essential for protecting internal networks. Defenders constantly
have to attempt convincing people to set passwords that are hard to guess. Meanwhile,
attackers have a broad toolbox for figuring out and taking advantage of passwords that
are still predictable.

So far, these attack techniques have concentrated on passwords chosen by humans, because they are motivated on picking
passwords that are easy to type or remember. Within an Active Directory network there are also passwords that are used by
computers or even whole domains in order to log in to other systems. Typically, these passwords are not picked by people
but instead automatically set to something completely unguessable or uncrackable, so attackers don’t bother with them.
However, there are some obscure exceptions to this rule, and these can be taken advantage of by attackers. This whitepaper

explores a number of new attack techniques that take advantage of these exceptions.

Many common AD attack techniques, such as Kerberoasting or
password spraying, take advantage of the predictability of passwords
chosen by humans either for themselves or for a service account they
manage. So far these types of attacks have been considered useless
against the passwords of accounts of which the name ends in a dollar
sign: these are usually non-personal AD accounts associated with

domain-joined computers or forest/domain trust relations. Normally,

AD securely generates long and random passwords for these types of
accounts, that are completely infeasible to ever guess with an (online

or offline) brute-force attack. Because of this, attack tool authors

Table of Contents

have so far been ignoring these accounts, as attempting to guess

their passwords seemed to be a waste of time. It turns out, however,

e b el S g el peetireieh £ that these types of passwords always being unguessable is a false

2. Attacking computer passwords 4 assumption in practice: there are actually several situations in which
| cracked a computer password. What now? 4 computer or trust accounts can have highly predictable passwords,
Technique #1: Widening the Kerberoast net > and we encountered this in a number of organizational domains. This
Technique #2: “Computer spraying” for initial fact has all kinds of interesting implications, and we have come up
access 6 with four novel AD pentesting techniques to take advantage of this.
Technique #3: Unauthenticated “Timeroasting”
for computer hashes In domains where weak dollar account passwords are present, these

3. Attacking trust passwords 8 techniques can provide new (stealthy) methods of initial access and
What about trust passwords? 8 additional avenues for lateral movement and privilege escalation
Trustroasting” for trust hashes 9 within AD environments.

4. Conclusion and recommendations 1

A GitHub repository is available with the custom tooling described in

this article.



VSecura

A BUREAU VERITAS COMPANY

1. How Dollar Accounts Get Bad Passwords

When we compromise a domain during a pentest or
perform a password strength assessment for one of our
customers, we usually import the entire domain’s account
database into Hashcat in order to crack password hashes.
Because AD “protects” passwords using unsalted MD4
hashes, the number of accounts in the domain barely affects
the performance of our dictionary or brute-force attacks.
Therefore we usually don’t bother filtering the hashes

we upload, and also subject the dollar account hashes to

cracking, even though common wisdom says this is useless.

However, we often see that some of our cracking results
also include accounts with a dollar name at the end,
which contradicts the idea that these accounts’ passwords
are uncrackable. Even more interesting, in most cases

the cracked passwords happen to be identical to their

usernames (excluding the dollar sign).

We were curious about how this could possibly happen,

and after some Googling stumbled upon a blogpost from

2012 by Joe Richards which explains that in the time of
Windows NT4, computer names were initialized with a
default password that matches the first 14 characters of

their computer name, lowercase and without a dollar sign.

New Object - Computer X

lab2019.intern/Computers

\ ; Create in:

Computer name:

| somecompl|

Computer name {pre-Windows 2000):
| SOMECOMP

The following user ar group can join this computer to a domain.

User or group:
| Default: Domain Admins

| Change...

I|:|Assign this computer account as a pre-Windows 2000 computer I

Cancel Help

Figure 1: A dangerous checkbox. When checked, your new

computer account will initially get a terrible password.

Apparently, the command line tool net computer (which
stems from the NT era) also sets this password for newly
created machines. Likewise, when you create a computer
object in the GUI you will have the option to click a

compatibility checkbox that will cause the same behavior.

We verified if this is still the case for an up-to-date Windows
Server 2019 domain controller, and to our surprise the
computer accounts we created this way did indeed still use
their names as their passwords! This behavior is not really
a secret but rather obscure. It is hard to blame system
administrators to not be aware of this dangerous side-effect

of checking a box or using a traditional tool.

Now, Windows systems do automatically rotate their
passwords every 30 days by default, which should eventually
cause the weak password to be replaced by something
secure. However, especially in situations where computer
accounts are added manually it's not hard to imagine
circumstances where legacy systems, test accounts or
computer accounts that were never actually used are still
lingering around in a large domain. It is also possible to

disable computer password resets, which would keep

the passwords insecure. Furthermore, attacker can also
simply be lucky to identify an insecure account within 30

days of its creation.

Having computers with weak passwords is one thing,

but we have also seen more than one case where a trust
account had a trivially crackable password as well. Trust
passwords act as shared secrets between domains or forests
and are used to facilitate users of a domain A to log in to

a service in domain B without having to directly expose the

user credentials to domain B.

When a trust between Windows domains is set up, the
password will be long and random. When setting up a trust
with a non-Windows Kerberos realm, however, you will

have to configure the password manually and therefore

Secura White Paper | Timeroasting, Trustroasting and Computer Spraying 3


https://www.secura.com/
https://hashcat.net/
https://blog.joeware.net/2012/09/12/2590/
https://blog.joeware.net/2012/09/12/2590/
https://web.archive.org/web/20070116022046/http:/support.microsoft.com/kb/320187
https://web.archive.org/web/20070116022046/http:/support.microsoft.com/kb/320187
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/domain-member-disable-machine-account-password-changes

VSecura

A BUREAU VERITAS COMPANY

you might accidentally pick something brute-forceable. Trust

passwords can also be reset manually in order to resolve

issues, providing another opportunity for administrators to
accidentally set a weak password. In a case we encountered,
a weak default password was set under the assumption that
a piece of third-party software would reset it to something

strong automatically, but for some reason that did not

happen in practice.

There are probably plenty of other ways to mess up
computer or trust passwords that we are not aware of yet.
Most importantly, we have observed quite a few times that
this has actually somehow happened in real organizations.
This means that looking for and exploiting these types of
weak passwords can be a useful tool for attackers and is
something that should be accounted for by defenders. We
will now examine what we can do with these observations

from an offensive perspective.

2. Attacking Computer Passwords

| CRACKED A COMPUTER PASSWORD. WHAT NOW?

So let’s say you've managed to determine the password of some Windows computer
account. What can you actually do with it? Well, first of all computer accounts are basically
just regular domain accounts, and just like user accounts they allow you to extract domain
information over LDAP, access world-readable shares and mount all kinds of authenticated
attacks like Kerberoasting, authentication coercion or AD CS abuse. So, when the computer
password is the first thing you've got, you more or less have the same level of access as

when you've compromised a single user.

Computer accounts can also be members of domain groups, so if a group has any special

privileges you can take advantage of those. If the computer in question happens to be a

domain controller, you can use its account to simply download the entire domain database
via a DCSync attack, and you've basically become Domain Admin right away. Alternatively,

if the computer has constrained delegation permissions to some other system, you can

obtain delegation tickets that allow you to impersonate users towards that second system.

Even if the computer account itself does not have very interesting privileges, the users
logged in to the computer the account belongs to might have. When you know a
computer’'s password, there are a variety of ways you can execute code with Local
Administrator privileges on that system. Probably the most effective method is to create a_
silver ticket for this computer with which you impersonate a user that has admin privileges
on it (such as the Domain Admin). Next, scan the computer for accessible network services

like SMB and use a standard technique like PSExec to achieve code execution.

If that sounds like too much of a hassle, there’s a good chance that if you just throw

Impacket’s versatile secretsdump script at the system with the computer account’s

credentials, its hashes will just spill out :)

So now that we have something to do with these weak passwords, we'll take a look at four

techniques of actually finding them.



https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/ad-forest-recovery-reset-trust
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/constrained-delegation
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/silver-ticket
https://github.com/fortra/impacket/blob/master/examples/secretsdump.py
https://www.secura.com/

TECHNIQUE #1: WIDENING THE
KERBEROAST NET

Computer accounts are basically just a type of service
account: they have SPNs and any domain user can request
Kerberos service tickets for them. These tickets are
encrypted with the account password, and if said password

is weak can be brute-forced offline (a Kerberoast attack).

So why do most Kerberoasting tools only display tickets
from non-computer service accounts? Well, that's simply
because these were intentionally filtered these out under

the assumption that computer tickets could not be cracked

searchFilter

searchFilter "(objectClass=*"

VSecura

A BUREAU VERITAS COMPANY

anyway. Since we now know this is not always true, we
can simply tweak an existing tool to not skip these kinds of

accounts.

While we could (and probably eventually should) submit
some pull requests for these tools that add this as a new
feature, for now we've just changed a single line of code in

Impacket’s GetUserSPNs.py script to broaden the LDAP

filter used to limit which accounts were targeted, as shown

in Figure 2 and Figure 3.

Figure 2: ugly hack to make the Impacket script GetUserSPNs.py no longer filter out computer accounts.

As a nice side effect, this might fool some EDR solutions that only trigger on the more specific OID.

ServicePrincipalName

Dfsr-12F9A27C-BF97-4787-9364-D31B6C55EB04 /WIN-TI9CT7RMSOC. Lab2019. intern
ldap/WIN-TJ9CT7RMSOC. lab2019.intern/ForestDnsZones.lab2019.intern
ldap/WIN-TJ9CT7RMSOC.lab2019.intern/DomainDnsZones.lab2019.intern
DNS/WIN-TJ9CT7RMSOC. Lab2019.intern
GC/WIN-TJ9CT7RMSOC.lab2019.intern/1lab2619.intern
RestrictedKrbHost /WIN-TJ9CT7RMS0C.lab2819.intern
RestrictedKrbHost /WIN-TJ9CT7RMSOC
RPC/dobd1bc9-c67b-4b66-b545-075c35da7a38._msdcs.lab2019.intern
HOST /WIN-TJ9CT7RMSOC/LAB2019

HOST/WIN-TJ9CT7RMSOC. lab2019.intern/LAB2619

HOST /WIN-TJ9CT7RMSOC

HOST /WIN-TJ9CT7RMSOC. lab2019.intern

HOST /WIN-TJ9CT7RMSOC. lab2019.intern/1ab2819.intern
E3514235-4B06-11D1-ABA4-00CA4FC2DCD2 /dObd1bc9-c67b-4b66-b545-0875c35da7a38/1ab26819.intern
ldap/WIN-TJ9CT7RMSOC/LAB2019
ldap/d6bd1bc9-c67b-4b66-b545-075c35da7a38. _msdcs.lab2e19.intern
Ldap /WIN-TJ9CT7RMSOC. Lab2819.intern/LAB2019

ldap/WIN-TJI9CT7RMSOC

ldap/WIN-TJ9CT7RMSOC.lab2019.intern
ldap/WIN-TJ9CT7RMSOC.lab2019.intern/1lab2819.intern
WSMAN/WIN1IBCLIENT1

WSMAN /WIN1OCLIENT1.1lab2619.intern

RestrictedKrbHost /WIN1OCLIENT1

HOST /WIN1ACLIENT1

RestrictedKrbHost /WIN1OCLIENT1.1lab2819.1intern
HOST/WIN1OCLIENT1.1lab2019.intern

HTTP/someservice

HTTP/yetotherservice

HTTP/someotherservice

WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMS0CS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN-TJ9CT7RMSOCS
WIN1OCLIENT1S
WIN1BCLIENT1S
WIN1OCLIENT1S
WIN1OCLIENT1S
WIN1OCLIENT1S
WIN1OCLIENT1S
suserl

suser2

suserz2

Figure 3: Result of running GetUserSPNs.py without account type restrictions. The ‘HOST' SPNs are

those belonging to computer accounts.

Afterwards, we can just crack these tickets as usual. In
order to account for legacy NT4 computer passwords, make

sure you also supply a custom dictionary that contains the ruleset along with this dictionary.

legacy password for each computer name (generated in

the manner shown in Figure 4). It's not necessary to use a

Secura White Paper | Timeroasting, Trustroasting and Computer Spraying

5


https://www.secura.com/
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/kerberoast
https://github.com/fortra/impacket/blob/master/examples/GetUserSPNs.py

VSecura

A BUREAU VERITAS COMPANY

name sys.stdin:

print(name.strip().rstrip('$').lower()[:14])

Figure 4: Python one-liner transforming computer names into corresponding legacy NT passwords.

TECHNIQUE #2: “COMPUTER SPRAYING”
FOR INITIAL ACCESS

In order to perform a Kerberoasting attack, we still need
to have some kind of user account, so we can't use it to
obtain initial access. A popular initial access technique is

password spraying: here a very short list of extremely

common passwords is used in combination with a list of
usernames (obtained from some internal or external source)
in the hope that at least one of these users happens to have
one of these very common passwords. The advantage of
this attack compared to regular brute-forcing is that you
circumvent account lock-out restrictions. The downsides are
that you need to rely on there being someone with a very
bad password (which is less likely with a stricter password
policy) and that you need to find a way to obtain or guess

usernames.

However, if we assume the domain may have at least one
computer account with a legacy NT password, we can use
a very simple variation of a password spraying attack: try

a single login attempt for every computer account with a
corresponding legacy password. Given a computer name
list, you can use a simple script like the one in Figure 4 to
get a list of passwords. Then you can simply plug both lists
in a spraying tool (like CrackMapExec with the --no-
bruteforce option). If this yields a hit, you've got a valid

AD account.

Of course you first need to somehow come up with a list of

computer account names. Luckily this is often easier than

determining regular usernames. Some tactics you could use

include the following:

1. If the domain has a reverse DNS zone, you can scan it
(e.g. with nmap -sL) to obtain internal domain names
corresponding to IPs. For many systems, the first label
of its domain name will correspond to its computer
name.

2. When you are scanning systems themselves via Nmap
or CrackMapExec you will frequently be able to learn
computer names via services like SMB.

3. Organizations usually name their systems in a
consistent way. You can obtain some initial examples
by scanning or sniffing broadcast traffic. Then, when
you see names like WORKSTATIONO1983 or ACME-
SERV4258 it won't be very difficult to predict and
generate a bunch of other potential names.

4. Standard user enumeration techniques (like exploiting
SMB NULL sessions) will also work for computer

accounts.

At this moment, we are not really sure yet how good
intrusion detection systems are at noticing this attack.

On the one hand, we only try one password per user and
failed computer logins do not correspond to well-known
attacker behavior. On the other hand, we are still doing a
whole lot of failed logins from a single source and each of
them definitely leaves behind a Windows event (event ID
4625; the same as when a regular user enters an incorrect

password), so we can hardly call this attack stealthy.



https://www.secura.com/
https://owasp.org/www-community/attacks/Password_Spraying_Attack
https://github.com/Porchetta-Industries/CrackMapExec

TECHNIQUE #3:

UNAUTHENTICATED “TIMEROASTING”
FOR COMPUTER HASHES

Domain-joined computers synchronize time using the
well-known Network Time Protocol (NTP), where a Domain
Controller acts as a time server. A problem with traditional
NTP is that it is not authenticated, and that MitM attackers
could spoof response packets and therefore mess with the

client’s clock.

To address this problem, Microsoft has added a custom
extension to NTP that cryptographically authenticates

NTP responses. When a system needs to synchronize its
clock, it will include the RID of its computer account to an
extension field in the NTP request. Then, the server will add
a cryptographic Message Authentication Code (MAC) of the
response that uses the NTLM hash (i.e. MD4 hash) of the

computer account password as a key.

The client can request one of two MAC mechanisms: a
preferred one based on HMAC-SHA512 and HKDF; and a
legacy mechanism that is defined as MD5(MD4(computer-
pwd) || NTP-response). This second approach is actually

pretty broken from a cryptographic perspective, but that

S sudo ./timeroast.py 10.0.0.42 | tee ntp-hashes.txt

VSecura

A BUREAU VERITAS COMPANY

should not be a problem for a client supporting the modern

variant.

Note that the client does not actually have to authenticate
itself to the NTP server. It can just pick any RID and the
server will look up the corresponding password and
authenticate the response with it. This does not seem like

a problem when you are just worried about time spoofing
attacks, but this system does have the side-effect that an
unauthenticated party can ask for what amounts to a salted

password hash of every computer account in the domain!

This is still not problematic as long as all computer accounts
are long and random but, as we established, that is not
always the case. Therefore, we can abuse NTP to get
“hashes” for every computer account and then attempt to

crack them offline.

We wrote a small tool that executes this “Timeroasting”
attack. Just give it an IP address of a domain controller and
should be able to extract the computer password hashes.
You can find it on GitHub.

:e0f76ffc495e33802c312bb2b9¢c3356¢: 1c0111e900000000000a24114c4f434cebe13d4de3392692e1b8428bf fbfcddaebel6cdb2f40f30fe6e16cdb2f41941F
:55f17a16ebfb225315187855f79f30de: 1c0111e900000000000a24124c4f434cebe13d4de4790edfe1b8428bf fbfcddaebel6cdc5c88b8alebe16cdc5¢89125¢
:8bcd871e4cda984c7a9fb48fbc3bc26c: 1c0111e900000000000a24124c4f434ce6e13d4de39369d4e1b8428bf fbfcd@aebelbcdc778acd4debel6cdc778b71b8
:55265c2d9510284b3ad62ab7d5cae532: 1c0111e900000000000a24124c4f434cebe13d4de4200050e1b8428bf fbfcddaebel6cdc7817804fe6e16cdc78171412

:cdd589bb4c6cb086120936c34eb67aab: 1c0111e900000000000a24124c4f434cebe13d4de49f74a4e1b8428bf fbfcddaebel6cdc7896Fb59e6e16cdc78976a14
:1e69c29c2f0ed1b9bedcac44a35efdcb: 1c0111e900000000000a24124c4f434ce6e13d4ded05c465e1b8428bf fbfcd@aebelbcdc7c15bd0Bebelbcdc7c165Fbd
:cd9843c3f44d719fbff51523a142ac19: 1c0111e900000000000a24124c4f434ce6e13d4de49831baelb8428bffbfcdOaebel6cdc7caB84025e6e16cdc7ca8bade

:56b@3e7b57da@f56ec4e91e6@dcb78@c:1c0111e9@@@@@@@@@@@a24124c4f434ce6e13d4de14c2649e1b8428bffbfcd@aeéelﬁcdc7d3343fae6e16cdc7d33b965

F/gure 5: Output of the Timeroast tool. Contains RIDs, MD5 hashes and NTP responses that can be

treated as a ‘salt’ for the password hashes.

Unfortunately, the resulting password hashes do not match
a format supported by Hashcat. While it was possible to
define a matching dynamic hash format in John the Ripper,
we ran into the problem that the salts (i.e. NTP response
bodies) were longer than what the tool supported. So
instead, we just created a very simple Python script that
would mount a (slow) dictionary attack with a list of
potential passwords, which is still suitable for cracking
legacy NT passwords or passwords that are particularly

weak. It's also still an order of magnitude faster than online

brute-forcing. You can also find this “timecrack” script in

our GitHub repository.

A downside of Timeroasting compared to Kerberoasting
(other than that you can’t use it to crack non-computer
accounts) is that the results do not actually contain the
computer names; only RIDs. You can map RIDs to computer
names if you can find an SMB share allowing NULL sessions.
If that doesn’t work, but you can obtain a list of (potential)

computer names using any of the other techniques

Secura White Paper | Timeroasting, Trustroasting and Computer Spraying 7


https://www.secura.com/
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sntp/8106cb73-ab3a-4542-8bc8-784dd32031cc
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sntp/8106cb73-ab3a-4542-8bc8-784dd32031cc
https://github.com/SecuraBV/Timeroast
https://github.com/SecuraBV/Timeroast

VvSecura

A BUREAU VERITAS COMPANY

described in the section above you'll have a good word

list to run a brute-force attack with, and then you'll be

able to decide the computer name based on the matching
password. You will also be able to brute-force other types of

passwords much faster.

Computers sending NTP requests is pretty normal, so it

probably won't trigger any alerts and doesn’t seem to result

in much of an audit trail either. | also doubt anyone will be
looking for suspicious NTP traffic (unless they are aware of
this blogpost) so for now Timeroasting by itself seems to be
quite a stealthy method of potentially obtaining an initial AD
account. Of course you would still need to come up with

a list of computer names, which may be more noticeable
unless you only use the brute-force strategy to come up
with them.

Computer Computer spray"‘]g T|meroaStlng
Kerberoastlng

Needs a user account?

Detectable? Yes

Finds legacy NT passwords?  Yes

Finds other weak passwords? Yes

Somewhat

No (unless you turn it into a
full online brute-force attack)

Probably not (so far)

Yes Yes

Yes (but only tells you the
RID of the account it belongs
to)

Table 1: Advantages and drawbacks of the three techniques to find weak computer passwords.

3. Attacking Trust Passwords

WHAT ABOUT TRUST PASSWORDS?

While, in our experience, weak trust passwords are a lot
more rare than weak computer passwords, the impact of
finding one of these is much larger, usually leading to full
compromise of at least one of the two domains in the trust

relationship.

The reason for this is because trust passwords are used to
create so-called inter-realm Kerberos tickets, also known as
referral tickets or trust tickets. These are basically encrypted
messages from domain A to domain B, stating something
along the lines of “I have identified that this is Bob, a user
of of domain A and a member of the Enterprise Admins
group”. The key used to decrypt and verify this message

is the trust password of the A-B trust. This trust password

is associated with two “trust accounts” stored in either

domain. In domain A this account would generally be called

“B$" and in domain B it would be called “A$".

What you can do with a compromised trust account
depends on the direction of the trust. If B trusts A, then you
can impersonate any user from the A domain when logging
in to B. If A also trusts B (a “two-way” trust relationship),
you can impersonate any users from B towards A. Your
capabilities up to this point depend on whether any users
from one domain have interesting privileges in the other.

If both domains are in the same forest however, you can
probably elevate yourself to Domain Admin in at least one

of the two domains.

If you want to know more about abusing trusts, and on
how to forge trust tickets in practice, we recommend you

read this excellent blog post on the topic on Active

Directory Security.

8 Secura White Paper | Timeroasting, Trustroasting and Computer Spraying


https://www.secura.com/
https://adsecurity.org/?p=1588
https://adsecurity.org/?p=1588

“TRUSTROASTING” FOR TRUST HASHES
Any user within a domain A can look up A’s trust
relationships; for example by running nltest /trusted_
domains. If a domain B trusts A, then the domain controller
of A will be able to issue trust tickets encrypted by the trust
password shared between A and B. It's the other way around

if the relationship is in the other direction.

If B trusts A, you can receive a trust ticket by simply asking
A for a ticket for some SPN in the B domain (for example
the HOST service of B's domain controller). This is easy to
accomplish with the Rubeus tool, by running the following

two commands with the credentials of any user in domain A:

s (RC4_HMAC,
+ 'h
WIN-TI9C

VSecura

A BUREAU VERITAS COMPANY

Rubeus asktgt /user:<username> /

password:<password>

Rubeus asktgs /service:host/<B-dc-name> /
ticket:<output of asktgt>

Rubeus will output the resulting trust ticket, which is the
only material you need to start a brute-force attack. By
default Rubeus will request an RC4-encrypted ticket, which
can be brute-forced much faster but it is more likely to be
detected as malicious. You can supply the /aes flag to ask for
an AES-encrypted ticket instead, making it very difficult to

distinguish your action from legitimate behavior.

for the

Figure 6: Using Rubeus to fetch a trust ticket.

Secura White Paper | Timeroasting, Trustroasting and Computer Spraying 9


https://www.secura.com/
https://github.com/GhostPack/Rubeus

VSecura

A BUREAU VERITAS COMPANY

So how do crack trust tickets? Luckily, the encryption used for Kerberoasting. To accomplish this, we wrote a
protocol and format is exactly the same as for any other simple conversion script in Python that was inspired by
Kerberos service ticket, so we can just use existing tools Rubeus’ Kerberoasting code. You can find this script in our_
like Hashcat. We only need to convert Rubeus’ output Timeroast repository.

format to the Hashcat service ticket syntax that is normally

S python3 kirbi_to_hashcat.py <<< 'doIFqzCCBaegAwIBBaEDAgEWooIESzZCCBKO9hggSrMIIEpS6ADAgEFORABDK
q+zZTgDIRX00YRHIVPpgB1AGP7UF9ESIWAXriWsajk7XFeprsDbly40Gsh3pSbCMXIMgI5cAJoGUAXE6RYXDGTpeqhMNMKT 1
55DaNlABKx07808u jxxubufzHQoINUQT /CSToduBgmTk45AeREzWUTDADbYVMQSVY5pY4dcGGTtdioxyGIQCiZIUyllzs
hgzZs853sqEC/@0m3NMMZRQNSeFOyPHHTITSZZNygyiKFloDkWuj35a4riu9tozfIYj3ciz6YNyz5v jRCHPFM3gNTKIADK
4CgSPHZ2NVIWUPKWXPoImz pY4FDQFWXHWRCOGVLGPV2SXWCDNY1ZGW+88ASqUr7qY6YZTS4+NicjIGUAEEHIt7CqIVAOP,
mgclzAoFT jJOVULXKGN2cr6528agbxsVnaswBkM8rLNCAru7QWMFm2t6PONTUDNo+Y95Sm9Q65QUchsBCvwg9IskfxaCbChd
er59C+GycAUag4CFOmDXz rrv1l3Mglz9dI35WyKKgecQnBpD92URUT09jIYBSGTajyPLW3C66q2Z0di+ZoNzeciilrR7w7gx
fLhkKJJIwzPYVipOHhBHbUXrL2PdRMLPGEb1fvhgzLt21VUOthmfmgFD3Q2uK2pI2A7BZiNoCU/ tWDvkX82 /m6gXiUu2vrid
IHVfYHSMIHPOoITHMMIHIMIHGOBswGaADAQEXoRIEEPEXUmhdDwq /Kzy18LOGD5ChEBSOTEFCM jAX0S5ITLRFUKGLE JAQOAR
MDESLkLOVEVSTgktMCugAWIBAQEKMCIbBmtyYnRNdBsYUBVDTOSETEFCLKXBQjIWMTKkuSUSURVIO'

Skrb5tgs$23S*USERNAMESLAB2019. INTERNSkrbtgt /SECONDLAB. LAB2019. INTERN*S8ebbd1759e81bdabecd38633
7aaB84c34c293d607d03c29c08128c72da7873f9a36a044a3a322ec9T0c14f1ca505ca3015709d7e6ebaf52f42a13 ¢
3cba3c71bbab9fcc7428f4d51077f0924e876e060993938e40791133c144c301d6d854c412558e6963875c1864ed74d
decad8819cB8125df37357bB87247ecBc94446a5134af7e308977b00f22e2bb4325896c3b1f6edbbb7ed6c5860652d17)
dea35328800393b3ae160dB8c33a5a00%9e7a7d34516644e17f765a215c9a201b67311d506d221f11ea65c52bee6adaly
4a5973e8226ce9638143405c171d645cdf@6bcb80F5764b15820e7635cc65bef3c012aaeafba98e9865F4b8F8dB9cEd
171bf8c30513c4b10cbl112bfe2d5a683154faaB821c315cfb56c30f614b778ddba823f9102f782715696219a0735¢cc@
43477 10026c285cdaf3b1f3e7ff498e1b70304499bbec342afc3ef20bcBc24876ef165ed08dee431fcd6c2c6e89e93
0214e983573aeb565dccB825cfd749df95b228a81c4270690Fdd94454ee876321806c1bb6a3c8fa56dc2ebaab667476
BaB02fTf4f2b6023fb315361dedcaeeed252d01a91d3dc594F214c5239bad9cd3b49076bc3b2dd30d218377e5864285
ea®5e2536beb5bb5340e2738a40b683358b2caed43fel6a7de7fc63e95006550b42656834719d605c016749bbcBb43

Figure 7: Converting Rubeus output to Hashcat input.

We didn‘t (yet) write a nice and complete “trustroasting” work. Once you've gotten the resulting hashes, you can
script that automatically identifies all trust tickets, requests plug them into Hashcat and start cracking. Make sure to
them and outputs them in Hashcat format. So you'd have add the names of the trust accounts to your word list as

to follow the above steps for every trust relationship. Luckily well. If you're lucky, you might have caught one with a bad

the amount of trusts is usually low, so this won’t be much password and some very high privileges.



https://www.secura.com/
https://github.com/SecuraBV/Timeroast
https://github.com/SecuraBV/Timeroast

3. Conclusion and Recommendations

None of the attacks described here are the result of new vulnerabilities in Windows. Rather,
they are just the result of extrapolation on what is possible when you drop the assumption that

computer and trust passwords are always strong and random.

We've only recently started looking at weak trust and computer passwords ourselves, and while
we've encountered quite a few of them so far, it's difficult to say how common this problem is
and how valuable it would be to include these techniques in a pentester’s toolkit. Nonetheless,

we have a few recommendations for those that may be affected by this:

For Network Administrators:

e If you are in a position where you have to specify a trust password myself, make sure to
generate a long random string.

e Avoid creating legacy compatible computer accounts.

e Make sure trust and computer password rotation are working properly. Get rid of legacy
domain computer accounts that have not been active for a long time.

e If you are creating computer accounts using something other than a standard domain join,

it can’t hurt to immediately rotate its password afterwards just in case.

For Defenders:

e  Failed login attempts with computer accounts should also be monitored. Unlike regular
users, where occasional failed logins are expected, a computer providing a wrong
password should be very rare under normal circumstances. If you see more of those you

may be dealing with a computer spraying attack.

For EDR Vendors:
e  Failed computer login attempts, or one source sending many NTP queries (or any NTP

query with a non-existent RID) should be treated as attack indicators.

For Pentesters and Red Teamers:

e Need initial AD access? Computer spraying or Timeroasting may just be the tricks that can
get you there.

e Trustroasting is a high-impact, low-probability but also low-effort attack. Definitely worth
trying, because if it happens to succeed the road to domain/enterprise admin may become
pretty short.

e Kerberoasting or cracking NTDS databases? Can't hurt to include the computer and trust

accounts as well. Also add potential legacy NT passwords to your wordlist.

For Microsoft:
e Consider warning users more clearly on what “pre-Windows 2000 compatibility” entails,

and avoid recommendations that may lead to admins manually picking trust passwords.




Contact us today at
info@secura.com or
visit secura.com for
more information.

VSecura

A BUREAU VERITAS COMPANY

About Secura

Secura is a leading and independent expert in digital security. Our customer markets
range from government and healthcare to finance and industry. Secura offers
technical services, such as vulnerability assessments, penetration testing and red
teaming. We also provide certification for IoT and Industrial (OT/ICS) environments,
as well as audits, advisory services and awareness training. Our goal: raising your

cyber resilience.

Follow us on: {3 (2

BUREAU
VERITAS

Shaping a World of Trust


https://twitter.com/securabv
https://www.linkedin.com/company/83775/
https://www.secura.com/
mailto:info%40secura.com?subject=
https://group.bureauveritas.com/
https://www.secura.com

